Stratigraphy of the Cenomanian–Turonian Oceanic Anoxic Event OAE2 in shallow shelf sequences of NE Egypt

Ahmed El-Sabbagh a,*, Abdel Aziz Tantawy b, Gerta Keller c, Hassan Khozyem d, Jorge Spangenberg d, Thierry Adatte d, Brian Gertsch e

a Department of Geology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
b Department of Geology, Aswan Faculty of Science, South Valley University, Aswan 81528, Egypt
c Department of Geosciences, Princeton University, Guyot Hall, Princeton, NJ 08544, USA
d Institut de géologie et paléontologie, Université de Lausanne, Anthropole, 1015 Lausanne, Switzerland
e Earth, Atmospheric and Planetary Science Department, MIT, Cambridge, MA 02139, USA

Article history:
Received 10 December 2009
Accepted in revised form 18 April 2011
Available online 27 April 2011

Keywords:
Cenomanian–Turonian OAE2
Shallow water sequences
Egypt

1. Introduction

The mid-Cretaceous (120–80 Ma) represents one of the warmest periods in Earth’s history (Norris et al., 2002; Gustafsson et al., 2003; Forster et al., 2007) characterized by high atmospheric CO2 levels (Arthur et al., 1985, 1991), high tropical sea-surface temperatures accompanied by relatively low latitudinal temperature gradients (Huber et al., 2002; Norris et al., 2002; Forster et al., 2007; Pucéat et al., 2007), a high sea level (Haq et al., 1987; Hallam, 1992; Voigt et al., 2006, 2007) and faunal and floral turnovers (Jarvis et al., 1988; Hart et al., 1993; Keller et al., 2001, 2008; Leckie et al., 2002; Erba and Tremolada, 2004; Keller and Pardo, 2004; Gebhardt et al., 2010; Gertsch et al., 2010b; Linnert et al., 2010). These greenhouse conditions coincided with a worldwide pulse in the production of new oceanic crust (Sinton et al., 1998; Courtillot and Renne, 2003; Snow et al., 2005; Turgeon and Creaser, 2008; Seton et al., 2009). Within this time interval, repeated widespread deposition of organic-rich shale, associated with major δ13C excursions mark perturbations in the carbon cycle and enhanced burial of 13C-depleted organic carbon during five Oceanic Anoxic Events (OAEs) (e.g., Hart and Leary, 1989; Erbacher et al., 1999; Leckie et al., 2002; Pucéat, 2008).

Among these Oceanic Anoxic Events, OAE2 represents the climax of a cycle of black shale deposition in the latest Cenomanian planktic foraminiferal Rotalipora cushmani Zone (e.g., Hart et al., 1993; Leckie et al., 1998; Keller et al., 2001, 2004, 2008; Keller and Pardo, 2004; Kuhnt et al., 2005; Voigt et al., 2006, 2007, 2008; Gebhardt et al., 2010). OAE2 is characterized by a ~2–3‰ positive shift in carbon isotopes and up to 6‰ in organic carbon that reflects an increase in productivity and/or carbon burial (Arthur et al., 1990; Keller et al., 2001, 2004; Kolonic et al., 2005; Jarvis et al., 2006; Voigt et al., 2006, 2007, 2008; Mort et al., 2008; Gebhardt et al., 2010; Linnert et al., 2010).

Black organic-rich shale characterizes OAE2 in deeper waters (outer shelf-upper slope), upwelling areas and basin settings of the North Atlantic, Mediterranean and surrounding margins (Kuhnt et al., 1997; Kolonic et al., 2002, 2005; Voigt et al., 2006, 2007, 2008; Keller et al., 2008; Mort et al., 2008). However, in shallow shelf sequences of NE Egypt...
marine platform and coastal areas (e.g., eastern Tethys) organic-rich black shales are generally absent, either because they were not deposited or not preserved (Buchem et al., 2002; Lüning et al., 2004; Gertsch et al., 2010a). In these shallow marine settings, faunal assemblages are characterized by low diversity, sporadic occurrences and long-ranging stress resistant species that provide relatively poor age control (Keller and Pardo, 2004; Gebhardt et al., 2010; Gertsch et al., 2010a,b).

This study examines carbon isotopes, micro- and macro-fossil biostratigraphies and faunal turnovers of the latest Cenomanian OAE2 in two shallow water coastal sequences (Wadi Dakhil and Wadi Feiran) of northeastern Egypt (Fig. 1). The results are correlated with published OAE2 records from other shallow water sequences in Egypt (Wadi El Ghaib, eastern Sinai, Gertsch et al., 2010a), Pueblo, Colorado (stratotype section and point, GSSP, Keller et al., 2004; Keller and Pardo, 2004), and NW Morocco (Azazoul section, Gertsch et al., 2010b, Fig. 2A). Specific objectives include: (1) stable carbon isotopes to evaluate the extent of the OAE2 δ13C excursion in marine-coastal areas, (2) biostratigraphy and age control based on macrofossils and microfossils (e.g., ammonites, oysters, planktic foraminifera, calcareous nannoplankton) and (3) evaluate faunal turnovers in shallow marine sequences insofar as the sporadic fossil record permits.

2. Geological setting

During the Cenomanian–Turonian, Egypt was part of a broad Tethyan Seaway with open marine circulation to the Indo-Pacific in the east and the Atlantic–Caribbean–Pacific in the west (Fig. 2B) (Said, 1990; Lüning et al., 1998, 2004; Issawi et al., 1999). Sediment deposition in Egypt occurred mainly during the sea-level transgression that progressively advanced to the south. Carbonate deposition marks the northern deeper part of the seaway (northern Sinai and the northern part of the Western Desert), whereas to the south (central and southern Sinai and the Eastern Desert) clastic sedimentation dominates (Kerdany and Cherif, 1990; Issawi et al., 1999; El-Sabbagh, 2000, 2008; Wilmsen and Nagm, 2009; Gertsch et al., 2010a). In shallow basins of the south, episodic sea-level fluctuations associated with high terrigenous influx are indicated by rapid facies changes of carbonates alternating with sandstones (Bachmann and Kuss, 1998; Lüning et al., 1998; Bauer et al., 2001, 2003).

Along the margins west and east of the Gulf of Suez rift, the Cenomanian–Turonian strata have an extensive aerial distribution and form distinct rock units lying almost directly on different horizons of the pre-Cenomanian Nubian Sandstone (Kerdany and Cherif, 1990; Issawi et al., 1999). They include beds with common to abundant macrofauna (e.g., ammonites, oysters) and intervals enriched in microfauna (e.g., foraminifera, nannoplankton) as reported in various publications (e.g., Said, 1962, 1990; Malchus, 1990; Kassab and Obaidalla, 2001; El-Sabbagh, 2008; Gertsch et al., 2010a; Nagm et al., 2010a,b).
Outcrops at Wadi Dakhl and Wadi Feiran represent parts of the margins west and east of the Gulf of Suez rift, respectively. The main bedrock outcrops are distributed in two major highly fractured elongated platforms running parallel to the Gulf of Suez (Said, 1962, 1990; Kerdany and Cherif, 1990). Wadi Dakhl is located in the southern part of the Southern Galala Plateau west of the Gulf of Suez with the Wadi Dakhl section located north of Bir Dakhl, about 30 km southwest of the Monastery of St. Paul (32° 25’ E, 28° 41’ N, Fig. 1). Wadi Feiran trends east–west in the southwestern Sinai and the section is located near the village of Mukattab, about 18 km from the Feiran traffic station at the road entrance to the Monastery of St. Catherine (33° 31’ E, 28° 47’ N).

3. Methods

The Wadi Dakhl and Wadi Feiran sections were examined in the field for lithological changes, burrows, macrofossils, hardgrounds and erosion surfaces, which were described, measured and sampled. A total of 119 rock samples were collected at an average of 30–50 cm intervals for the Wadi Dakhl outcrop and 57 rock samples for the Wadi Feiran outcrop at intervals of about 25 cm. At Wadi Dakhl, macrofossil assemblages were collected throughout the sequence wherever present. At Wadi Feiran only few macrofossils were observed.

In the laboratory, sediment samples were processed for foraminiferal analysis using standard methods (Koller et al., 1995). Planktic and benthic foraminifera were analyzed in the >63 μm size fraction, mounted on microslides and identified. Planktic foraminifera are generally rare, though common in some intervals in both sections. Benthic foraminifera are common to abundant. Quantitative estimates of foraminifera were obtained from at least 100 planktic specimens, and up to 600 benthic specimens. Identification of planktic and benthic species follows that of Cushman (1946), Omara (1956), Sliter (1968), Robaszynski and Caron (1979), and Bolli et al. (1994). Preservation of foraminiferal tests is good to moderate.

Calcareaous nannofossils were processed by standard smear slide preparation from raw sediment samples as described by Perch-Nielsen (1985). Smear slides were examined using a light microscope with 1000x magnification. Each slide was observed under cross-polarized light. Preservation and abundance of nannofossils are moderate to poor throughout the Wadi Feiran section. Calcareaous nannofossil species abundances were semiquantitatively evaluated as follows: common: >1 specimen per field of view (FOV); few: 1 specimen per 1–10 FOV; rare: 1 specimen per >10 FOV.

Carbon isotope composition of bulk rock carbonates was determined using a Thermo Fisher carbonate-preparation device and GasBench II connected to a Thermo Fisher Delta Plus XL continuous flow isotope ratio mass spectrometer (IRMS). CO2 extraction was done with 100% phosphoric acid at 70 °C. The stable carbon isotope ratios are reported in the delta (δ) notation as the permil (‰) deviation relative to the Vienna-Pee Dee belemnite standard (VPDB). Analytical uncertainty (2σ) was monitored by replicate analyses of the international calcite standard NBS-19 and the laboratory standards Carrara Marble and Binn Dolomite was better than ±0.05‰ for δ13C.

4. Lithology

At Wadi Dakhl and Wadi Feiran, the Cenomanian–Turonian sequences are composed of siliciclastic sediments in the lower part, mixed siliciclastic carbonates in the middle part, and mostly carbonates in the upper part (Figs. 3 and 4). Different lithostratigraphic schemes have been proposed to describe the Cenomanian–Turonian deposits in the northern Eastern Desert, Gulf of Suez and western Sinai despite lithologic and faunal similarities (e.g., Cherif et al., 1989; Kerdany and Cherif, 1990; Kora et al., 2001; El-Sabbagh, 2008; Wilmsen and Nagm, 2009). As a result, the Cenomanian–Turonian deposits of the Wadi Dakhl and Wadi Feiran sections were included in the Raha (early–late Cenomanian), Abu Qada (late Cenomanian–early Turonian) and Wata (late Turonian) Formations (Figs. 3 and 4).

The Raha Formation (Ghorab, 1961) is well represented in the Wadi Dakhl section by sandstone, shale, marl, dolomite and limestone (Fig. 3) that reflect the first shallow marine transgression in northeastern Egypt during the Cenomanian (Kerdany and Cherif, 1990; Issawi et al., 1999). Around the Gulf of Suez, the top of a sandstone interval (i.e., the Mellaha Sand Member of Ghorab, 1961) marks the Raha/Abu Qada transition (Cherif et al., 1989; Kora et al., 2001; El-Sabbagh, 2008). At the Wadi Dakhl section, sandstone deposition ends at 33.7 m, which may represent the Raha/Abu Qada boundary. The lower part of the Raha Formation is poorly fossiliferous with oysters, trigonid bivalves, gastropods and a few bioturbated levels. The middle part contains more common oysters, gastropods, bivalves, ammonite, rudists and echinoids, whereas the sandstones of the upper part are largely devoid of macrofossils.

The Abu Qada Formation (Ghorab, 1961) is well developed in the Wadi Dakhl and Wadi Feiran sections (Figs. 3 and 4) and consists of shales, marls, nodular marls, limestones and oyster-rich limestone beds. Ammonites are rare in the Wadi Feiran section, but macrofossils are common to abundant in the Wadi Dakhl section, including ammonites, gastropods, bivalves, rudists, echinoids, corals, sponges and ichnofossils. The Wata Formation (Ghorab, 1961) in Wadi Dakhl is represented by a carbonate facies consisting of limestone, marly limestone and shales with common ammonites, bivalves, gastropods and echinoids (Fig. 3).

The Wadi Dakhl section spans from the lower Cenomanian to the upper Turonian. The basal 9.0 m consists of sandstone intercalated with sandy silty shale in the lower and upper parts. Between 9.0 and 24.7 m, sediments consist of alternating marl (Fig. 3B), dolomite, dolomitic limestone, shale and silty-sandy shale layers. A unique 0.5 m thick oyster bed is present at 18.8 m (Fig. 3). A clastic interval between 24.7 and 36.1 m consists of alternating sandstone, shale, silty-sandy shale, a thin marl bed at 29.3 m and a thick shale layer at the top. Oyster-rich limestone and marly limestone layers (36.1–42.6 m) overlie this interval and are intercalated with marl and shale layers. Above is a thick shale layer followed by a 1.0 m thick oyster bed and an interval of alternating shale, marl, marly limestone and thin dolomite layers (42.6–55.0 m). Lithotologies between 55.0 and 60.3 m are dominated by limestone, marly limestone and thin shale layers with common ammonites and echinoids. A disconformity is indicated at the top of this unit by the strongly bioturbated limestone followed by a red laminated shale layer (1.8 m thick) that marks the transition to a poorly fossiliferous interval (62.1–66.6 m) of silty-sandy shale, sandstone, shale and marl layers (Fig. 3). Near the top of the section is a thick fossiliferous marly limestone, partly dolomitic (66.6–76.6 m) with a 0.8 m thick shale bed. Shale, marlly and partly dolomitic limestones mark the uppermost part of the section.

The Wadi Feiran section outcrops in a cliff and spans the late Cenomanian to early Turonian (Fig. 4). The lower part of the section (0–2.7 m) consists of alternating marl and shale layers with thin nodular marly limestone (10 cm thick) and oyster (20 cm thick) beds. Marl beds contain rare nodules and are poorly fossiliferous. Rhythmically bedded thin marl and limestone layers overlie this interval (2.7–5.0 m). A thick marly limestone bed (5.0–11.3 m) terminates at a 1.1 m thick oyster bed with an erosional surface at the top (Fig. 4). Between 12.4 and 14.0 m is a fossiliferous dolomite limestone layer with multiple hardground surfaces indicating nondeposition and/or erosion (reef facies). Alternating marls and
shales with ammonites (14.0–15.5 m) underlie a thick bed of highly fossiliferous (bioclastic) limestone (15.5–19.9 m). This unit terminates at a 0.5 m thick marly limestone layer containing rare echinoids. Above is a red laminated shale layer (0.4 m thick). The top of the section (20.8–23.0 m) consists of a thick marl layer with a 0.3 m thick marly limestone layer in the middle part (Fig. 4).

5. Isotope stratigraphy

In shallow water sequences, carbonates are likely to undergo diagenesis that alters the primary isotopic signals and limits their role in paleoenvironmental interpretations (Jenkyns et al., 1994; Schrag et al., 1995). Diagenesis strongly affects oxygen isotopes by...
recrystallization and/or interstitial fluids, which leads to significant lowering of δ18O values and obliterates the original sea water temperature signals, though trends tend to be preserved (Jenkyns et al., 1994; Mitchell et al., 1997; Paul et al., 1999). In contrast, δ13C values are little affected by diagenesis due to the low carbon content of pore waters (Schrag et al., 1995), except in sediments influenced by organogenic carbon incorporation (Marshall, 1992). Carbon isotopes therefore closely track environmental changes.

5.1. Wadi Feiran

In the basal part of the Abu Qada Formation, δ13C data show low values (−1.4 to 1.5‰) with a drop to −0.3‰ just below an oyster bed (1.9 m), followed by a sharp increase to 2.9‰ in a 0.2 m thick oyster bed and a further increase to 4.6‰ at 3 m (Fig. 5A). This δ13C shift marks the global OAE2 excursion and the first (peak 1) of two δ13C maxima, as observed worldwide (e.g., Kuhnt et al., 1997, 2005; Keller et al., 2001, 2004, 2008; Leckie et al., 2002; Kolonic et al., 2005; Jarvis et al., 2006; Voigt et al., 2006, 2007, 2008; Gebhardt et al., 2010; Gertsch et al., 2010a,b; Linnert et al., 2010). After the first peak, δ13C values drop to 2.5‰, then gradually increase to 4.5‰ at 6.5 m, which probably marks the second peak of the global δ13C excursion (Fig. 5A). δ13C values remain relatively high and steady up to 20.6 m where they gradually decrease to 2‰ in the upper part of the Abu Qada Formation.

5.2. Wadi Dakhl

Samples that contain sufficient carbonate for stable isotope analysis are relatively few at the shallower Wadi Dakhl section (Fig. 5B). In the middle part of the Raha Formation (18.5 m) the δ13C curve shows low values (0.19‰). An increase to 1.4‰ occurs in a 0.5 m thick oyster bed (18.8–19.3 m), followed by a decrease to −0.3‰ in the overlying marl (21.3 m). Between 21.3 m and 36.0 m carbonate values are too low for stable isotope analysis. In the lower part of the Abu Qada Formation (36–50.4 m), δ13C values fluctuate between 0.4 and 1.9‰ with values up to 2.2‰ at 41 m. Between 50.4 and 55.1 m, no samples are available (dashed line in δ13C curve, Fig. 5B). Above this level, δ13C values reach 4.3‰ and mark the upper part of the OAE2 excursion below the C/T boundary. Just above the C/T boundary, an abrupt drop in δ13C to −1.2‰ at 60 m marks a major hiatus with early Turonian sediments above it. The absence of the characteristic two δ13C peaks and prolonged plateau indicates that this hiatus spans most of the OAE2 excursion. In the upper Turonian Wata Formation, δ13C values fluctuate between −0.4 and 2.4‰. The relatively small-scale cyclical oscillations in this interval may be largely the result of lithological changes (Paul et al., 1999; Keller et al., 2001; Voigt et al., 2006).

6. Biostratigraphy

6.1. Ammonites

In shallow water Cenomanian–Turonian sequences of the southern Tethys, ammonites offer good age control and regional correlations (Robaszynski and Caron, 1995; Hardenbol et al., 1998). Low diversity and endemism have led to a number of regional ammonite biozonations, including Egypt (Table 1). These biozonations have been widely discussed (Kora and Hamama, 1987;
Kassab, 1991, 1994, 1999; Kassab and Ismael, 1994; El-Sabbagh, 2000, 2008; Kassab and Obaidalla, 2001; El-Hedeny, 2002; Zakhera and Kassab, 2002; Nagm et al., 2010a,b) and correlated with the Pueblo, Colorado, stratotype section and point (GSSP) based on carbon isotope stratigraphy (e.g., Gertsch et al., 2010a,b).

6.1.1. Neolobites vibrayeanus interval zone (Zone C1)

Zone C1 is defined by the total range of the zonal marker N. vibrayeanus (Fig. 6). In the Wadi Dakhl section occurrences of the index species were observed between 21.0 and 23.4 m, which tentatively identify the base of zone C1 (Fig. 7). Associated with...
these occurrences is the oyster *Ilymatogyra (Afrogyra) africana*, a characteristic early late Cenomanian species of Egypt (Malchus, 1990; El-Sabbagh, 2000, 2008). In the Wadi El Ghaib section, zone C1 spans up to the first appearance of *Vascoceras cauvini* Chudeau, 1909, Upper Cenomanian Abu Qada Formation. C1 also spans the interval below the $\delta^{13}C$ excursion, though the C1/C2 boundary is uncertain because the $\delta^{13}C$ shift and most of the plateau are missing (Fig. 7). Zone C1 was not sampled in the Wadi Feiran section.

In Egypt, zone C1 is generally confined to the upper part of the Raha Formation (Abdel-Gawad, 1999; Kassab and Obaidalla, 2001; El-Sabbagh, 2008; Gertsch et al., 2010a). However, in the field the
boundary placement between the Raha and Abu Qada Formations is uncertain. The Mellaha Sand Member of Ghorab (1961) is considered a marker horizon. However, a sandstone unit is not a unique marker in shallow water sequences that frequently contain sandstones. In the absence of distinct lithologic markers, the boundary between the Raha and Abu Qada Formations remains unknown. For these reasons, we tentatively identify the upper part of the Raha Formation as equivalent to zone C1.

6.1.2. V. cauviní interval zone (Zone C2)

Zone C2 is defined by the first occurrence (FO) of the zonal marker V. cauviní at the base and/or the last occurrence (LO) of N. vibrayeanus. The top of zone C2 is marked by the LO of V. cauviní and/or the FO of Vascoceras proprium, an early Turonian ammonite that marks the Cenomanian–Turonian (C/T) boundary. In Egypt, the base of zone C2 coincides with the trough between the \(\delta^{13}C \) excursion peak 1 and peak 2, whereas the top coincides with the end of the \(\delta^{13}C \) plateau at or near the C/T boundary (Gertsch et al., 2010a).

At the Wadi Dakhl section, the \(\delta^{13}C \) excursion and plateau are mostly missing due to one or more hiatuses. Only a short interval of high \(\delta^{13}C \) values (3.8–4.3‰) is present and probably represents part of the plateau. In this interval V. cauviní is present and marks zone C2 (Figs. 6 and 7). The oyster Exogyra (Costagyra) olistropoñensis, which marks the latest Cenomanian in the Tethys seaway (Kennedy et al., 1987; Meister et al., 1992; Chancellor et al., 1994; Kassab and Obaidalla, 2001; Wilmsen and Nagm, 2009), was observed below the FO of V. cauviní. Above this interval, \(\delta^{13}C \) values abruptly drop to <1‰ and indicate a hiatus at or near the C/T boundary (Fig. 7). Above the hiatus, the early Turonian ammonites V. proprium and Vascoceras durandi are present. Below the interval of high \(\delta^{13}C \) values the onset of the \(\delta^{13}C \) excursion and maximum values (peak 1 and peak 2) are missing, which indicates another hiatus.

At Wadi Feiran, the base of C2 can be tentatively inferred by the rare occurrence of V. cauviní, which coincides with the upper part of the \(\delta^{13}C \) plateau (Fig. 8). The characteristic ammonites that define the C/T boundary were not observed, although Kassab and Obaidalla (2001) reported them earlier. The C/T boundary was...
therefore placed at the end of the δ^{13}C plateau excursion, coincident with the position of this boundary event globally.

6.1.3. V. proprium total range zone (Zone T1)

Zone T1 is defined by the total range of the zonal index species V. proprium. These globose vascoceratids (Fig. 6) are good biostratigraphic indicators for the early Turonian in the southern Tethys (Hardenbol et al., 1993; Robaszynski and Gale, 1993; Chancellor et al., 1994). At Wadi Dakhl, V. proprium was observed along with V. durandi in a very short interval (59.0–60.4 m) above the hiatus evident in the δ^{13}C curve (Fig. 7). This indicates that most of zone T1 is missing. At Wadi Feiran, the zone T1 index species was not observed. V. proprium is common in the early Turonian Psuedoaspidoceras flexuosum Zone in the Tethyan realm (Meister and Rhalmi, 2002; Meister and Abdallah, 2005) and US Western Interior (Kennedy et al., 1987; Kennedy and Cobban, 1991). Zone T1 is thus considered equivalent to the P. flexuosum Zone and probably the Watinoceras devonense Zone (Table 1).

6.1.4. Choffaticeras segne total range zone (Zone T2)

Zone T2 is defined by the total range of the nominate species (Fig. 6). At Wadi Dakhl, zone T2 is recognized between 60.4 and 66.6 m in the upper part of the Abu Qada Formation, and at Wadi Feiran between 20.8 and 23.0 m. In both sections zone T2 coincides with low δ^{13}C values (Figs. 7 and 8).

6.1.5. Coilopoceras requienianum total range zone (Zone T3)

Zone T3 is defined by the total range of the zonal index species. C. requienianum was observed in the Wadi Dakhl section (Fig. 6) with the first appearance about 4 m above Ch. segne. Therefore, the T2/T3 boundary is tentatively identified (dashed interval, Fig. 7). The last occurrence was observed at 76.6 m. Zone T3 and thus spans an interval from 70.6 to 76.6 m at Wadi Dakhl. C. requienianum is a well-known late Turonian ammonite index species (e.g., Cobban and Hook, 1980; Wright et al., 1984; Nagm et al., 2010a,b).

6.2. Planktic foraminifera

Planktic foraminiferal assemblages are present only in sporadic intervals and rotaliporid index species generally rare or absent in the shallow water sequences of Egypt (Cherif et al., 1989; Shahin and Kora, 1991; Kora et al., 1994; Gertsch et al., 2010a). Relative age interpretations can be made based on these sporadic assemblages and integration with calcareous nannofossils and carbon isotope stratigraphies.

6.2.1. Wadi Dakhl

In this section, the Cenomanian–Turonian planktic foraminiferal assemblages range from few to common (Fig. 7). In the marl and shale layers below the high δ^{13}C values, heterohelicids, hedbergellids and globigerinellids are sporadically common and whiteinellids are present (e.g., Præglobostrumana stephani, Dicarinella algeriana). This interval is tentatively placed in the R. cushmani Zone. Whiteinella archocretacea are present between 49.2 and 54.9 m, an interval that is tentatively placed in the W. archocretacea Zone (Fig. 7). Above this interval, high δ^{13}C values indicative of the OA2 plateau indicates the upper part of the W. archocretacea Zone, although the interval is barren (Keller and...
Pardo, 2004; Keller et al., 2008; Caron et al., 2006). Globigerinelloides bentonensis, which generally disappears above the δ13C excursion peaks (Keller et al., 2001; Keller and Pardo, 2004), is absent. This indicates that the lower part of the OAE2 δ13C excursion is missing at the Wadi Dakhli section. The uppermost planktic foraminiferal assemblage occurs in the shale and limestone layers between 59.0 and 61.0 m above the high δ13C values. This assemblage contains abundant heterohelicids and whiteinellids, which is generally indicative of the early Turonian, though no zonal index species are present.

6.2.2. Wadi Feiran

In this section, planktic foraminifera range from few to common with the first sporadic assemblages of heterohelicids, hedbergellids, whiteinellids and dicarinellids in marl, shale and marly limestone layers between 0 and 10.3 m (Fig. 8). *W. archeocreatae* first appears at 1.5 m, near the onset of the δ13C excursion, as also observed in the Wadi El Ghaib section in the eastern Sinai (Gertsch et al., 2010a) and elsewhere (Nederbragt and Fiorentino, 1999; Keller et al., 2001, 2008; Leckie et al., 2002; Keller and Pardo, 2004; Caron et al., 2006; Gebhardt et al., 2010; Gertsch et al., 2010b). Rotaliporids are absent in this shallow water environment. The base of the *W. archeocreatae* Zone is defined generally by the extinction of all Rotalipora species, including the index species *R. cushmani* (Caron, 1985; Robaszynski and Caron, 1995). This extinction datum occurs in the trough between δ13C peaks 1 and 2 (e.g., Keller et al., 2001, 2008; Leckie et al., 2002; Kuhnt et al., 2005; Gebhardt et al., 2010; Gertsch et al., 2010b), except for the Pueblo stratotype section, where the *R. cushmani* extinction coincides with the δ13C peak 1 as a result of condensed sedimentation (Keller and Pardo, 2004). At Wadi Feiran, we tentatively place the *R. cushmani/ W. archeocreatae* Zone boundary in the trough (4.75 m) between the two δ13C peaks and just below the FO of *Denticulina imbricata*, as also observed in the Pueblo stratotype section (Fig. 8). Above the OAE2 δ13C excursion (21.1–21.8 m), a relatively diverse planktic foraminiferal assemblage of heterohelicids, hedbergellids and whiteinellids is indicative of early Turonian age, though the index species Helvetoglobotruncana helvetica is absent. The C/T boundary is tentatively placed at the end of the δ13C excursion plateau, correlative with the Pueblo stratotype section and elsewhere (Hart et al., 1993; Keller and Pardo, 2004; Voigt et al., 2006, 2007; Gebhardt et al., 2010; Gertsch et al., 2010b).

6.3. Calcareous nanofossils

Calcareous nanofossils at Wadi Feiran are generally rare, poorly preserved and limited to distinct lithostratigraphic units (Fig. 8). Sixty-three species attributable to 21 genera were identified, including the index taxon, which allow reasonably good biostratigraphic resolution (Fig. 9). This study mainly follows the standard cosmopolitan zonations of Sissingh (1977) and Perch-Nielsen (1979, 1985) and incorporates additional bioevents from Bralower (1988) and Burnett (1998). Two nanofossil zones (CC10a and CC11) and three subzones (CC10a–c) have been identified and correlated regionally (e.g., Sinai, Jordan, Tunisia, Morocco, Table 2). Zone CC10 spans the late Cenomanian (Perch-Nielsen, 1985) and is defined by the interval from the first occurrence (FO) of Lithraphidites acutus and/or FO of Microrhabdulus decoratus to the FO of Quadrum gartneri. Manivit et al. (1977) and Perch-Nielsen (1985) subdivided Zone CC10 into a lower CC10a, or Microstaurus chiastius subzone, based on the last Burnett (1998) divided the same interval into four zones: Zone UC3—Zone UC6 (Table 2). Recently, Tantawy (2008) subdivided Zone CC10 into three subzones (a, b and c) based on the successive last occurrences of Axopodorhabdus albianus and Hellenia (Microstaurus) chiastia (Fig. 8, Table 2). These events order consistently relative to other marker species and provide reliable indices (Bralower, 1988).

At the Wadi Feiran section, subzone CC10a spans the basal 3.8 m of the Abu Qada Formation (Fig. 8). Preservation in the lower part of this subzone is generally poor with low abundances and species richness. Subzone CC10b is recognized between 3.8 and 8.3 m of the Abu Qada Formation. The base of this subzone occurs just above the δ13C excursion peak 1, whereas the top lies above peak 2. The same correlation was observed in the Tarfaya basin, southern Morocco (Tantawy, 2008). Subzone CC10c is 11.6 m thick at Wadi Feiran and occupies the upper part of the Abu Qada Formation. Near the top of the section nanofossil preservation is poor and most samples are barren. The top of CC10c coincides with the end of the δ13C plateau at or near the C/T boundary (Fig. 8). Subzones CC10b and CC10c correspond to Zones UC5 and UC6, respectively, of Burnett (1998).

Zone CC11 spans the Early and Middle Turonian (Perch-Nielsen, 1985) and is defined by the interval from the FO of *Q. gartneri* at the base to the FO Effelliithus eximius (e.g., Cepke and Hay, 1969; Perch-Nielsen, 1985) and/or FO of Lucionorhabdus maleformis (e.g., Sissingh, 1977) at the top. Zone CC11 corresponds to Zone UC7 of Burnett (1998) and spans the uppermost part of Abu Qada Formation (Fig. 8). Preservation is poor and only 2 species are present. The base of CC11 (FO *Q. gartneri*) approximates the C/T boundary (Birkeland et al., 1984; Perch-Nielsen, 1985; Robaszynski et al., 1990; Nederbragt and Fiorentino, 1999). In the Tarfaya basin, southern Morocco, this level is observed near the top of the δ13C plateau, about 45 cm below the FO of *H. helvetica*, which approximates the C/T boundary based on planktic foraminifera (Keller et al., 2008; Tantawy, 2008; Gertsch et al., 2010b). In contrast, Bralower (1988) and Bralower et al. (1995) noticed *Q. gartneri* below the C/T boundary (their IC48 Zone), whereas others placed the FO of this species in the early Turonian (e.g., Burnett, 1998; Luciani and Cobianchi, 1999; Lees, 2002) (Table 2).

7. Paleoenvironment

7.1. Microfossils as environmental proxies

7.1.1. Planktic foraminifera

In shallow environments, planktic foraminifera reflect high stress conditions by generally low diversity, dwarfing and sporadic presence. In Wadi Dakhli only a narrow interval of the OAE2 δ13C excursion is preserved due to erosion. No planktic foraminifera present in this interval (Fig. 7). Immediately below is a low diversity assemblage of whiteinellids, heterohelicids, globigerinellids and hedbergellids that indicates a shallow environment. During the late Cenomanian (13–45 m) only 2–5 planktic foraminiferal species are sporadically present and reflect high stress conditions. In the
interval above the δ13C excursion, high stress conditions are indicated by the presence of only Heterohelix species and Whiteinella baltica. Heterohelix generally dominates near-shore assemblages in areas with salinity or oxygen fluctuations (e.g., Nederbragt, 1991, 1998; Premoli Silva and Sliter, 1999; Keller and Pardo, 2004; Pardo and Keller, 2008; Gebhardt et al., 2010), and in upwelling areas, such as Tarfaya, Morocco (Keller et al., 2008; Gertsch et al., 2010). Planktic foraminifera reappear above the hiatus that marks anoxic conditions during the early Turonian. It is well known that in shallow water facies organic matter is not preserved (e.g., oxidized), and, consequently, black shale is replaced by red shale that in shallow water facies organic matter is not preserved (e.g., oxidized), and, consequently, black shale is replaced by red shale (e.g., Voigt et al., 2006, 2007; Keller et al., 2008; Gertsch et al., 2010a,b).

At Wadi Feiran, the OAE2 δ13C excursion interval is relatively complete (Fig. 8). Planktic foraminiferal assemblages below the δ13C peak 1 consist of low salinity and low oxygen tolerant species (e.g., heterohelcids, hedbergellids, whiteinellids and guembelinitids) that reflect nutrient-rich, dysoxic conditions in a coastal environment. The low salinity tolerant hedbergellids (e.g., Hedbergella delrioensis, Hedbergella planispira), low oxygen tolerant heterohelcids (e.g., Heterohelix reussi, Heterohelix moremani) and disaster opportunist Guembelitria cenoman a are among the last survivors in shallow inner neritic environments (Hart, 1980, 1999; Leckie, 1987; Leckie et al., 1998, 2002; Keller and Pardo, 2004; Pardo and Keller, 2008; Keller and Abramovich, 2009). Above the δ13C peaks 1 and 2, planktic foraminifera are absent, except for one isolated occurrence of G. cenomana and D. algeriana. This absence coincides with a very shallow water environment and consequently extreme stress conditions, as indicated by oyster beds and bioclastic limestones (Fig. 4). Planktic foraminifera reappear only above the δ13C excursion in the early Turonian, similar to Wadi Dakhl (Figs. 7 and 8), and are absent in the red layer that represents anoxic conditions.

7.1.2. Benthic foraminifera

Late Cenomanian to early Turonian benthic foraminiferal assemblages in the Wadi Feiran and Wadi Dakhl sections are more diverse and abundant than planktic species, which reflects the shallow water environment (Figs. 8 and 10). Benthic foraminiferal assemblages are dominated by low oxygen tolerant agglutinated (e.g., Ammobaculites, Haplophragmoides, Spirolectammina, Cribrostomoides, Thomasinella) and hyaline species (e.g., Coryphostoma plagium, Praebulimina aspera, Pyramidina proliza, P. nannina, Neo-bulimina albertensis, Fursenkoa nederi, Gavelinella sandidgei) (Murray, 1973). Within these assemblages, infaunal species (deposit feeders that profit from high food availability) are more abundant than epifaunal species, which indicates dysoxic seafloor conditions (Jarvis et al., 1988; Hart et al., 1993; Koutsoukos et al., 1990; Peryt and Lamolda, 1996; Gebhardt et al., 2010). Benthic foraminifera are nearly absent during the δ13C plateau (oyster and bioclastic limestones) and in the early Turonian red shale that reflects delayed anoxic conditions.

7.1.3. Calcareous nannofossils

The composition and distribution of nannofossil taxa are generally indicative of paleoecological and paleoenvironmental conditions (e.g., nutrient supply, surface sea water temperature, water depth). However, the effects of diagenetic processes and poor preservation strongly affect the original assemblages (Fig. 9). Effects of dissolution are indicated by high abundance of dissolution-resistant species, such as Watznaueria barnesae and Eproolithus fl oralis (Roth and Krumbach, 1986; Erba et al., 1992) and rare occurrence of solution-susceptible species (e.g., Eiffellithus species, Tranolithus phacelosus, Predisco phera spinosa (Thierstein, 1980; Roth and Krumbach, 1986; Paul et al., 1999; Linnert et al., 2010)). W. barnesae, which is common in the Late Cenomanian CC10a, b subzones, is widely used as a preservation indicator. Roth and Krumbach (1986) and Tantawy (2008) pointed out a good linear correlation between diversity and relative abundance of W. barnesae, although ecological factors may also have affected the distribution (Eshet and Almogi Labin, 1996; Bauer et al., 2001). E. floralis shows an increased in abundance at the topmost part of CC10a and lower CC10c (Fig. 8). This species is relatively resistant to dissolution (e.g., Thierstein, 1980; Roth and Krumbach, 1986; Bralower, 1988; Linnert et al., 2010), and high abundance around the C/T boundary is at least partly a preservational artifact. Similar preservational trends and low diversity in Cenomanian–Turonian
The calcareous nannofossil assemblage have been observed regionally (e.g., Sinai: Bauer et al., 2001, 2003; Jordan: Schulze et al., 2004; Morocco: Tantawy, 2008; Gertsch et al., 2010b).

In the Wadi Feiran section, calcareous nannofossils suggest that surface waters were probably cooler during deposition of the lower part of Abu Qada Formation and warmer in the upper part. This is indicated by the higher abundance of *E. fl oralis*, *Biscutum constans* and *Zeugrhabdotus* species in the upper CC10a and lower CC10c subzones (e.g., Roth and Krumbach, 1986; Premoli Silva et al., 1999; Mutterlose and Kessels, 2000; Mutterlose et al., 2005). Abundant *E. fl oralis* was previously interpreted as a characteristic of high latitudes and colder and/or lower salinity water (Roth and Krumbach, 1986; Bralower, 1988). Lamolda et al. (1994) observed the maximum abundance in the marl beds at Dover to coincide with less negative δ18O values, and hence climate cooling. The tropical *W. barnesae* is common in most low to mid latitude Cretaceous assemblages but absent from high latitudes in the Cretaceous (Bukry, 1973; Thierstein, 1981; Shaflk, 1990; Watkins et al., 1996; Lees, 2002; Tantawy, 2008). *Rhagodiscus* species, which are considered a paleotemperature proxy indicative of warm water conditions (Mutterlose, 1989), are rarely present in the lower part of the section (Fig. 8).

Common *Zeugrhabdotus erectus*-sp., *E. fl oralis*, *B. constans*, and few *Rhagodiscus asper/splendens* in the lower half of the section (Figs. 8 and 9) are interpreted as indicators of high surface-water productivity in upwelling regions (Roth, 1981; Roth and Krumbach, 1986; Erba, 1987; Erba et al., 1992; Mutterlose et al., 1994; Premoli Silva et al., 1999; Howe et al., 2000; Linnert et al., 2010). In the Wadi Feiran section, common *E. fl oralis* and *Zeugrhabdotus* species in association with oyster-rich limestone may reflect eutrophic conditions (e.g., Roth and Krumbach, 1986; Premoli Silva et al., 1999).

High abundance of the nannofossil *Broinsonia* characterizes neritic chalk seas in SE Europe, Texas and the south of France (Roth and Bowdler, 1981; Roth and Krumbach, 1986). Bralower (1988) observed high abundance of this taxon in upper Cenomanian samples from England, Germany and N. America and interpreted this as indicating shallow water, reduced salinity or high fertility. Linnert et al. (2010) confirmed high abundance in late Cenomanian, but recorded low abundance and hence low fertility during the OAE2 interval. In the Sinai Wadi Feiran section, the shallow water depth is probably the main factor controlling the distribution of *Broinsonia* species, as well as the low diversity and abundance of other calcareous nannofossils.

7.1.4. Oyster biostromes

Biotic stressed conditions in the Wadi Dakhl and Wadi Feiran sections are also indicated by the presence of oyster-rich limestone.
layers that form tabular oyster biostromes as a result of high nutrient flux and rising sea level (Glenn and Arthur, 1990; Abed and Sadaqah, 1998; Dhondt et al., 1999; Pufahl and James, 2006). In the studied sections and through North Africa, oyster biostromes are commonly associated with the onset of the δ^{13}C excursion (Gertsch et al., 2010a, b). Oysters are efficient filter feeders, tolerate a wide range of environmental conditions and can respond quickly to environmental perturbations. They typically occur in high energy, shallow (<20 m) and faunally restricted environments with low salinity, mesotrophic nutrient levels and turbid water column (Pufahl and James, 2006). Such environments are generally unfavorable for planktic and most benthic foraminifera and explain their absence during the δ^{13}C plateau.

8. Late Cenomanian OAE2

The severity of the late Cenomanian oceanic anoxia (i.e., black shale deposition) in the water column depends largely on distance to the coast and water depth, terrestrial influx, marine primary productivity, organic matter preservation, oxidation in the water column, and rates of sedimentation (Pedersen and Calvert, 1990; Canfield, 1994; Arthur and Sageman, 1994). Deeper basins near upwelling areas (i.e., typical anoxic settings; e.g., Tarfaya basin, Morocco) reveal extremely high sedimentation rates and organic contents (Kuhn et al., 2005; Kolonic et al., 2005; Keller et al., 2008; Mort et al., 2008). Shallower middle shelf sequences of the U.S. Western Interior at Pueblo, England, Croatia, Portugal, Italy and Spain reveal higher terrigenous influx and lower organic contents (Hart et al., 1993, 2008; Drzewiecki and Simo, 1997; Sageman et al., 1998; Davey and Jenkyns, 1999; Gale et al., 2000; Keller et al., 2004; Keller and Pardo, 2004; Parente et al., 2007; Gebhardt et al., 2010). Among these well-known shelf settings, e.g., in southern England, Jarvis et al. (1998) suggested that organic matter preservation and reductions in microfaunal assemblages (planktic and benthic foraminifera and nannofossils) indicate dysoxic but never anoxic, brackish and mesotrophic conditions during the OAE2. However, Gale et al. (2000) argued, largely on the basis of macrofauna and trace fossil evidences, that there was not even dyseraebic and that diversity reductions were due to oligotrophic nutrient levels.

8.1. OAE2 in shallow near-shore areas

Paleoenvironmental reconstructions for the Cenomanian—early Turonian of Egypt suggest that there was no significant carbonate platform at that time (Lüning et al., 1998, 2004). During the late Cenomanian, shallow subtidal, calcareous deposits covered almost the entire Sinai (Cherif et al., 1989; Kora et al., 1994; Lüning et al., 1998; Bauer et al., 2003) and Eastern Desert (Bandel et al., 1987; Kuss, 1992; Kassab, 1994). In the northern Sinai, shoal carbonates were attached to the shelf edge (Kuss and Bachmann, 1996), whereas in the southern Sinai and Eastern Desert, a thin belt of sandstones interfingered with fluvial deposits (Bandel et al., 1987; Kuss and Bachmann, 1996). At Wadi Dakhli and Wadi Feiran, the Cenomanian—Turonian sequences reflect a typical shallow near-shore environment deepening with the late Cenomanian to early Turonian sea level rise as indicated by dominant carbonate deposition (Figs. 3 and 4). Such shallow marine environments are often characterized by high nutrients due to terrigenous runoff and low salinity due to fresh water influx (Keller et al., 2004; Keller and Pardo, 2004; Gertsch et al., 2010a, b).

In this shallow inner neritic depositional environment of Egypt, the OAE2 δ^{13}C excursion shows characteristics similar to the GSSP section at Pueblo (Leckie et al., 2002; Keller and Pardo, 2004; Caron et al., 2006; Gertsch et al., 2010a, b). The magnitude of the OAE2 δ^{13}C excursion (~4.5‰) is comparable to the Wadi El Ghaib section in the eastern Sinai (5‰; Gertsch et al., 2010a), Eastbourne, England (~5‰; Jarvis et al., 2006), Tarfaya and Agadir, Morocco (3–4‰; Keller et al., 2008; Mort et al., 2008; Gertsch et al., 2010b), but higher than at Pueblo, Colorado (~2.5‰; Keller et al., 2004) and Azazoul, Morocco (~3‰; Gertsch et al., 2010b) (Fig. 11). This reveals that the OAE2 δ^{13}C excursion, which is mainly known from black shale deposits of deeper marine environments, reached into inner shelf and coastal environments, as earlier observed by Gertsch et al. (2010a, b) and confirmed in this study. However, the characteristic anoxic conditions of the δ^{13}C plateau are not apparent in the lithology of the studied sections (Figs. 3 and 4).

8.2. Delayed OAE2 anoxia

Gertsch et al. (2010a, b) observed that in shallow near-shore environments anoxic conditions were not reached until the early Turonian and well after the OAE2 δ^{13}C plateau in the Wadi El Ghaib section of the Sinai and in northern Morocco (Azazoul section). This study confirms these observations in the Wadi Dakhli and Wadi Feiran sections. Lithologically, the delayed anoxic conditions are indicated by the presence of red laminated shales in the early Turonian of shallow C/T sections in Egypt and Morocco (Fig. 11). These red shales are diagenetic products of the originally dark organic-rich shales (Voigt et al., 2006, 2007; Gertsch et al., 2010a, b). Neither planktic nor benthic foraminifera are observed in these red shales, which suggest anoxia comparable to the δ^{13}C plateau. The delay in anoxic conditions is considerable and probably encompasses most of ammonite zone T1. In all sections it occurs after the OAE2 δ^{13}C plateau in the early Turonian, although the timing appears to depend on local environmental conditions. The delayed anoxic conditions in inner shelf areas appear to be related to the sea-level transgression, which reached its maximum in the early Turonian transporting low oxygen waters shoreward, which resulted in organic-rich shale deposition (see also Gertsch et al., 2010a, b). Despite this delay, the δ^{13}C excursion that characterizes OAE2 in marine environments is comparable and coeval to that in deeper open marine environments, including the stratotype at Pueblo, Colorado (Fig. 11).

9. Conclusions

- Biostratigraphic control in shallow water sequences is difficult due to low diversity and sporadic occurrences, though integrated macro- and microfossil biostratigraphy and stable isotope stratigraphy yields good age control for late Cenomanian to early Turonian sequences.

- Subtidal to inner neritic environments during the late Cenomanian OAE2 excursion at Wadi Dakhli and Wadi Feiran are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers.

- The late Cenomanian OAE2 δ^{13}C excursion is recorded in shallow inner neritic environments of NE Egypt, and appears coeval with the OAE2 δ^{13}C excursion in open marine environments.

- Anoxic conditions characteristic of the late Cenomanian OAE2 are delayed until the early Turonian in shallow shelf sequences. This delay appears to be associated with the maximum sea-level transgression in the early Turonian that transported low oxygen waters shoreward.
Fig. 11. 13C correlation of the late Cenomanian OAE2 excursion in Egypt, Morocco and Pueblo. Note that the OAE2 13C excursion is comparable in all sections. The absence of the characteristic two 13C peaks at the Wadi Dakhil section indicates a major hiatus. Dark grey areas mark OAE2, whereas light grey marks the interval between peaks 1 and 2. No anoxic conditions are observed during OAE2 in these shallow environments, but delayed anoxic conditions are observed in the early Turonian in Egypt and Morocco (darker grey areas). These delayed anoxic/dysoxic conditions are correlated with the maximum sea-level transgression in shallow environments.

Acknowledgments

We thank the reviewers M. Hart, D. Horne and one anonymous, for comments and helpful suggestions. This study was supported through a grant from the Binational Fulbright Commission in Egypt to A. El-Sabbagh while visiting Princeton University, and partly supported by the U.S. National Science Foundation under Grant No. 0217921.

References

