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We investigated the Paleocene-Eocene bouypdar 2009; Svensen et al., 2010), or melting of methane-rich permafrost
GSSP(Dababiya quary) near Luxor Egypt, in two  (DeConto etal. 2010).

nearby (25m and 50m) sequences based on high Methane release from clathrates is currently the most commonly
y q 9 cited scenario to explain the PETM event. Methane clathrates are

resolution biostratigraphyithostratigrapy mineralogy  stored along the continental rgar under stable conditions high
and geochemisyr Results confirm the many positive pressure and relatively low temperatufesy change in the physico-
aspects of the Dababiya GSSP but also show potentia”yhemical conditions of the oceans can result in methane release,
serious limiting factors: (1) the GSSP is located in thelncluding changes in ocean circulation (Dickens et al. 1995), decreased
. . . pressure resulting from slope failure (Katz et al. 1999), and change
deepest part of a ~200 m wide submarine channel, Wh'dﬂw bottom water temperature due to changes in thermohaline
limits its use as global type section. (2) Some lithologicCcirculation (Bice and Marotzke 2002). On a global scale most studies
units identified at the GSSHe absent or thin out and show an abrupt negativé®8 shift linked to an abrupt increase in
disappear within the channel and beyond. (3) The p-Etemperature as regult ofgmassive input pfgreenhouse gases upsetting
b d is ol d at the base of a clav laver above a the carbon cycle in marine and terrestrial ecosystems (Kennett and
oundary IS placed at the base ylay "Sott, 1991; Dickens et al., 1995, Zachos et al., 2001, 2005, 2001;
erosion surface with variable @sion of latest Paleocene  grnst et al., 2006: John et al., 2008).
and earliest Eocene sediments. (4) Theenirdefinition In 2003 the International Commission foir&igraphy (ICS)
of the P-E boundary as marked by the abrupt onset oflesignated the Dababiya Quaigcated ngar the Dapabiya village,
the carbon isotope excursion at the base of a clay IayEILuxor, Egypt, as the Globaki&totype Section and Point (GSSP) for

) he Paleocene-Eocene (PE) boundanyich is also marked by the
is not supported at the GSSP because 50m to the le ETM eventThe golden spike for the PE boundary was placed in

the excursion begins gradually 60cm below the P-Ethe basal part of the Esna Formation (Dupuis et al., 2003y et
bounday and eaches minimum values in the bounydar al., 2007) based on the following criteria: (1) the abrugawic carbon
clay. Wth awarness of these limiting factors and isotope excursion (CIE), (2) extinction of deep-water benthic

. . _foraminifera (including ®nsioina beccariiformis (3) the transient
recognition of the gradual onset of the PETM excursion ( g ks (3)

: ST occurrence of planktonic foraminiferéA¢arinina africana,
the GSSean contribute significantly to a mcomplete A sibaiyaensis, Mazovella allisonensjsiuring the §C excursion,

understanding of this global warm event. (4) the transient occurrence of tRliomboaster spp. — Discoaster
araneus(RD) nannofossils assemblage, and (5) an acme of the
Intr oduction dinoflagellateApectodinium.

Based on these criteria the Dababiya section was considered the

The Paleocene-Eocefbermal Maximum (PETM) at ~55.9 Ma  most complete and expanded Upper Paleocene to Lower Eocene
is one of the most important climatic event of the Cenozoic sequence and representative of this boundary event globally
accompanied by a majot®& shift, sudden increase in temperature, (Dupuis et al., 2003Aubry et al., 2007)A lithologic sequence of
diversification calcareous plankton and extinction in benthic five distinct beds was identified and believed to be traceable
foraminifera, followed by temporal diversification and migration of throughout the area and possibly into neighboring countries (Speijer
modern mammals (e.g., Kennett andt§1991; Lu and Keller 1995; et al., 2000). Subsequentlywas recognized that the basal beds of
Pardo et al., 1999; Zachos et al., 2001, 2003, 2005gBan and the GSSRvere deposited in a submarine channel with river digehar
Ouda 2005Alegret at al., 200%legret and Ortiz, 200%Vesterhold ~ (Schulte et al., 201, this study) placing some doubt on the
etal., 2009;). McInerney amling (2011) summarized the scenarios  completeness of this section and its value as a global stratdtype.
proposed to explain the PETM including wildfires as a result of study further evaluates this stratotype section based on (1) the nature
burning peat and exposed coal deposits in a dry climate of theand completeness of the sedimentary record, depositional environment
Paleocene. Others proposed injection of hydrothermal bodies inte@nd high-resolution biostratigraphg) the nature of the" &, and
organic-rich mudstones of Cretaceous-Paleocene age in the Nortl513COrg records, and (3) the climate changes before, during and after
Atlantic resulting in thermogenic methane releasegtthold etal.,  the PETM event.
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The designated Dababiya GSSP outcrop, which has the most For XRD mineralogywhole rock and clay mineral analyses,
expanded sedimentary record, is not available for sampling becaussamples were prepared following the procedures of Kubler (1987)
of its limited lateral exposure to a just a few tens of meters. Permissiorand Adatte et al. (1996)The semi-quantification of whole-rock
was granted to sample two sections at 50m to left (LSS) and 25m tanineralogy is based on XRD patterns of random powdered samples
the right (RSS) of the GSSPig. 1, B and C)A total of 102 samples by using external standards with an errorgivabetween 5 and 10%
were collected at 2cm, 5¢cm, and 10cm sample spacing spanning thier the phyllosilicates and 5% for grain minerals.

Upper Paleocene to Lower Eocene interval.

Geological setting and lithostratigraphy

Biostratigraphy:For foraminiferal analysis about 100gr sediment
(from the left side section) was processed per sample by standard The Dababiya GSSP section is located on the eastern side of the
methods (Keller et al., 1995). Shell preservation is excellent inupper NileValley 35 km southeast of Luxor City (25°30"' N, 32°31"
carbonate-rich intervals but poor to absent in the PETM excursionFig.1A). Four lithostratigraphic formations (Fm) are exposed in the
interval. Biostratigraphic analysis was performed on >63 mm andarea: the Dakhla Fm. at the base is a greenish calcareous shale, above
38-63 mm size fractions with quantitative counts of ~300 specimensis the marly limestone to chalk of tliarawan Fm., followed by the
picked and mounted on cardboard slides for a permanent record angreen-gray to dark-gray shale of the Esna Fm. and ending at the top
the remaining sample residue searched for rare and zone-definingith the limestones or flint of th€hebes Fm. Dupuis et al. (2003)
index species. For calcaous nannofossil@mples were processed subdivided the Esna Fm. into three main units (Esna-1, Esna-2, and
by smear slide preparation from raw sediment samples as describelisna-3) based on carbonate contents. Only Esna-1 and Esna-2 are
by Perch-Nielsen (1985). Calcareous nannofossils were observeeéxposed at the GSSPigs. 2, 3). The P/E boundary is placed in the
qualitatively with the light microscope at a magnification of 1000x. lower part of the Esna Fm. between Esna-1 and Esna-2, about 7m
The taxonomy used is describedAobry (e.g. 1999) and Perch- above théfarawan Formation. Five distinct beds in Esna-2 mark the
Nielsen (1985). GSSPPETM interval (Dupuis et al., 20033t the base of Esna-2,

Bed-1 consists of 0.63m of dark laminated, non-calcareous clay with

Geochemical and mineralogical analysEsr each sample 25gr  a few phosphatic coprolites at the bade overlying Bed-2 consists
of sediment was cleaned and powdered in an agate nddtéareach of 0.5m of brown shale with coprolites and low carbonate content.
sample the agate mortar was cleaned three times with deionised wat@&ed-3 is a 0.84m-thick shale, cream-colored, laminated and phos-
and once with ethanol, and then-diied to avoid sample  phatic. Bed-4 is a 0.71m-thick gray shale with high carbonate content,
contamination. Powdered samples were analysed for bulk rockand Bed-5 consists of 1m-thick grey marl to marly limestone (Fig. 2).
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Figure 1.A: Location of the Dababiya GSSB and C: Field photographs show the lithology across the 25 m from the G8&# right side
section (RSS) and the 50 m to thetlsfde section (LSS). Note the sharp thinning out of the sediragntinits to the right and more gradual
thinning out to the lef of the GSSHmarks a channel deposit.
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Bulk rock mineralogical composition
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Figure 2. \ertical distribution of bulk rock mineralogical dat in the sections to the [e{LSS) and right (RSS) of the GSSRote the
differences in bulk rock compositions in these channel depossflect the absence of the lowermost Eocene sedismgoin the RSS.

At 50m to the left of the GSSP the Dababiya left side sectionthe PETM (samples 1 to 27) indicate marls with a low detrital index
(LSS) was sampled-he section consists of the late Paleocene marl (DI 1.15) and average 42.70% calcite, 40.65% phyllosilicates, 6.93%
to marly shale of Esna-1, a well-defined sequence boundary (SBjuartz, 0.37% anhydrite (Ca-apatite is absent, Fig:t®.sequence
and the overlying early Eocene Esna-2 units (Figs. 2, 3B). Esna-doundary (SB) marks the base of the PETM and a sharp decrease in
units are significantly reduced to the left and right sides from the calcite (5.44%) coincides with increased phyllosilicate (57.74%),
GSSPlocation reflecting the submarine channel morphology quartz (8.21%), anhydrite (7.09%), and Ca-apatite (7.48%8.
Following Dupuis et al. (2003) we divide Esna-2 into five beds with detrital index is relatively high (DI 1.3plso present are goethite
the following thicknesses and lithological characteristics: Bed-1 (1.64%), K (1.76%) and Na feldspar (3.04%).

(0.32m) and Bed-2 (0.48m) consist of slity claystone with anhydrite In Esna-2 three distinct intervals mark Beds 2-5. Bed-1 to base
layers. Bed-3 (0.24m) is a silty marl with phosphatic nodules andBed-2 (samples 29-39) shows an abrupt increase in phyllosilicate
anhydrite. Bed-4 (1.0m) consists of marl to marly limestone (Fig. 2). (64.77%), quartz (16.75%), goethite (1.26%), and anhydrt&@¢a)

Only the basal 5cm was recovered from Bed-5. (Fig. 2). In contrast, K- and Na- feldspar are low and calcite nearly

At 25m to the right of the GSSP the Dababiya right side sectionzero (0.82%) and low Ca-apatite (0.56%). In the middle of Bed-2
(RSS) was sampled with the same lithologies as at the LSS, excegsamples 40-42), sharply increased calcite (34.48%) correlates with
that Bed-1 is absent and possibly also the lower part of Bed-2, whichdecreased other bulk rock contents and disappearance of Ca- apatite.
is only 0.24m thick (Fig. 3B), as also suggested by mineralogic dataUpper Bed-2 and Bed-3 (samples 43-50) contain maximum Ca-apatite
including the absence of one of the four anhydrite layers present in25.56%) coincident with increasing anhydrite and decreasing other
LSS (Fig. 2, discussed below). Bed-3 (0.4m) consists of silty clay minerals, though calcite remains relatively high (24.27%). Bed-4
with phosphatic nodules, Bed-4 (0.6m) is marl and Bed-5 consists oshows the return to marl composition (average: calcite 49.93%,

a 0.4m thick marly limestone (Fig. 2). phyllosilicate 33.2%, Ca-apatite 5.81%, quartz 5.54%, anhydrite
1.08%).

Results RSS is similar to LSS except that Bed-1 and the lower part of
Bed-2 are missing (Fig. 2). Below the P/E boundary marls contain

Bulk rock mineralogy relatively high phyllosilicate (38.76%), and calcite (49.74%) and low

quartz (5.34%)An abrupt change at the P/E boundary (Bed-2, sample
At Dababiya LSS, bulk rock components in the interval below 21) shows increased phyllosilicate (57.09%) and quartz (17.35%),
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Figure 3. A. Correlation of the LSS and the RSS with the published Dababiya G&3Rpuis et al., 2003) based on both organic Carbon
isotopes, and new datbtined for inorganic carbon isotopes. Bo#°C,, and §°C, ; in the LSS show gradual decreasearsing 60cm

below the SB. Tha3*C_,, CIA-minimum coincides with the SB whereas th&°C_; CIA-minimum is in the upper third of bed-2. B.
Diagram illustrating the lateral disappearance of beds 1 and 2 on either sides of the main GSSP marks deposition in asymmetric channel.
See photo illustration in Fig. 1B,C.

and sharply decreased calcite (1.64%). From the upper Bed-2 int@arbonate isotopes ](?Qcarb) and oganic carbon isotopeélécorg)
the middle of Bed-3 (samples 22-31) calcite increases to 35.27% andnd compared with the ¥ , of the GSSP section (Dupuis et al.,
phyllosilicate and quartz decrease to 25.13% and 9.33%, respectivelf2003).At LSS the upper Paleocene (samples 1-15) shows relatively
In Beds 4 and 5 (samples 32-42, Fig. 2), all bulk rock componentsstead;é“Ccarbvalues around 1%o (except for a single point of 2.2%o,
return to the marl composition observed below the P/E boundary Fig. 3A). In the 50cm below the PE boundary (samples 1642(2garb
values gradually decrease to -3.5%he PETM corresponding to
Sable isotopes Bed-1 and base of Bed-2 is carbonate poor yielding/i@, , data.
From Bed-2 to the middle of Bed-3°_, values remain low at
The Dababiya LSS and RSS were measured for bulk rockaround -2%e., then rapidly increase to about 0%. near the base of Bed-

Episodes ™. 37, no. 2
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4 and reaching 0.39%o at the top of the section (Fig. 3A). first appearance @carinina sibaiyaensis marks zone P5 and the top
Organic carbon isotopes show similar trends. In the lower part ofof the PaleoceneAt Dababiya LSS this 62cm thick interval

Esna-15"°C_, values are around -25.8%o, then increase to -23.8%. corresponds to the gradual decreas&'i,, andd°C_,, values,

(sample 8) and gradually decrease to the minimum values betweenand experienced a 40% increase in species diversity (from 21 to 35

27 %o and -28 %o in the PETM interval (Beds-1 andApradual species) and decreased abundance of the dominant zone P5 species.

increase in Bed-3 reaches maximum values of -26.1%o. in the middleMost common among the newly appearing speciesgoena

of Bed-4 (sample 55) then gradually decreases at the top of the sectiobroedermanni, |. lodoensis, Globanomalina luansis, GlI.
Dababiya RSS diérs significantly from the LSS section due to australiformis, Gl. chapmani, Gl. planoconicand Morozoevella

the erosional disconformity that marks the P/E boundary (Fig. 3A). gracilis.

Paleocene values of baitiC, ands'*C_, , are steady through Esna- Acarinina sibaiyaensis, which marks the base of zone E1, first

1 with a sharp negative excursion at the P/E boun@hry indicates appears just below the 42 cm thick barren clay interval of Bed-1

that the gradual decrease observed in the LSS section is missing dysamples 25-26)A good assemblage of the transient PETM fauna

to erosion as also indicated by the missing Bed-1 of the basabominated byA. sibaiyaensiandA. africanaand the first appearances

Paleocenelhed'*C,, ands"’C_, values average of -28 and -2.41%», of A. africana, Moozovella allisonensjsand the zone E2 index

respectivelyabove the erosion surface in Beds-2 and 3 (samples 20speciesPseudohastigerina wilcoxensggecurs in a 5 cm interval

31) and are similar to the equivalent interval in the LSS. In Beds 4between the barren clay below and the slightly calcareous clay above

and 52')13COrg (-26.7) and'>13cCarb (0.5%o) values return to nearly pre-  (Fig. 4).The upper clay (35cm, upper Bed-2 and Bed-3 corresponds

P/E boundary values (-25.3 and 0.89%o). to the upper part of the PETM. Bed-4 contains a diverse and well-
preserved zone E2 assemblagenitoxensis andl. velascoensis)
Biostratigraphy dominated byPlanomtalites pseudoscitula, Mozovella acuta, .

lodoensis, | bbpedermanniA. esnaensig). eshnehensisyhe return
Planktic foraminiferal and calcareous nannofossil biostratigraphy of this thriving assemblage coincides with the recovery oEB]ﬁ(%rg
of the more complete Dababiya LSS shows major turnovers acrosandémccarbvalues after the PETM.
the PETM interval (Fig. 4). Planktic foraminifera span biozones P4c,  The calcareous nannofossil assemblage is moderately diversified,
P5, E1 and E2 with an estimated time span of 2 {54/5-56.5Ma, and the preservation varies from poor to moderate, except for the
Olsson et al., 1999; Pearson et al., 2006). Zone P4c marks the base dissolution interval (devoid of nannofossils) that spans Bed-1 and
the section (samples 1-12) as indicated by the disappearance of titee lower part of Bed-2. Below the barren interval, nannofossil
index speciesslobanomalina pseudomerttir This assemblage is  diversity averages about 16 species, whereas above it both abundance
dominated bylgorina tadjjikistanensisAcarinina soldadoensis, and diversity sharply decrease to about 8 species and dissolution
Subbotina hornibwoki, Moozovella acuta and M. aequa resistant taxa dominate (e.g. Discoaster spp, Coccolithus pelagicus
The interval from the extinction of Gl. pseudomaetiiato the along with reworked forms. Nannofossil diversity increases gradually

Dababiya
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Figure 4. Carbon isotopesX*C,, and§*C_,,) and selected species ranges of planktic foraminifera and calcareous nannofossil species at
50 m to the lefof the Dababiya GSSMNote that a reduction in species richness in the late Paleocendsgilby a few new species during
the gradual decrease in carbon isotopes and this evolutionary trend increased during the gradual recovery in carbon isotopes in the early

Eocene.

June 2014



83

parallel to the CIE and reaches a maximum at the base of Bed-8lissolution and/or dilution due to increased detrital input (Fig. 2).
(Fig. 4). (2) The thickness of Bed-1 is variable: at the maximum in the main
The calcareous nannofossil turnover spans subzones NP9a an@SSP outcrop, reduced to half the thickness at 50m to the left (LSS)
NP9b (e.g., Martini, 197 ubry 1995, 1999)The first appearance  and absent at 25m to the right (RSS). ABpve the sequence
of Discoaster multiradiatudefines the base of Zones NP9 of Martini boundary the change in the vertical distribution of the bulk rock
(1971) whereaBasciculithus bobbi disappears consistently near the compositions from the LSS to the RSS outcrops shows persistent
middle of subzone NP9a (sample 9) &dlanii near the top (Fig. 4, increases in phyllosilicates and quartz, the presence of feldspar and
Perch-Nielsen, 198%ubry, 1999). Most species disappear at the P/ minimum values in calcite (Fig. ZJhe bulk rock composition at the
E transition, and only.Eympaniformis survives and becomes extinct RSS outcrop shows abrupt changes at the P/E boundary as quartz,
in the lowermost Eocene. Fasciculithus tonii last occurs in the upperfeldspar and phyllosilicates increase and calcite decreases within a
Bed-4 (sample Db57) this species must be reworked here, because5tm thick interval above the SBhis abrupt change in the bulk rock
is one of the Paleocenedarfasciculthus that disappear at the onset composition marks the absence of lowermost Eocene sediments from
of CIE-PETM and Ftympaniformis at the base of Bed-5 (sample the RSS outcrop due to erosion linked to the existing paleorelief. (4)
60), as also observed in ti¢lantic, Pacific andTethys oceans  Variation in Ca-apatite is another indicator of erosion and/or variable
(Monechi et al., 2000; Rfet al., 2005;Tantawy 2006;Agnini et sedimentation. In the LSS outcrop Ca-apatite increased 60cm above
al., 2007). the SB whereas in the RSS outcrop this increase is observed just
The base of Subzone NP9b was defined based on the firsabove the SBThis suggests that at least 60cm is missing at the RSS
appearances dfampylosphaera eodeltmnd Rhomboaster spp ~ compared with the LSS outcrop and about 80cm missing compared
(Okada and Bukry1980), or alternatively the simultaneous first with the GSSP (including Bed-1 and part of Bed-2, Fig. 3, 3B).
appearances &. calcitrapaR. spineus). araneusandD. anartios Based on field observations and variations in bulk rock
(Aubry et al., 2003)At Dababiya the NP9a/NP9b transition coincides compositions, we conclude that the lower part of the Dababiya GSSP
with the PETM dissolution interval, which is followed by the first section (Bed-1 and Part of Bed-2) was deposited in a submarine
appearance of Rhomboaster cuspid R. bitrifida (sample 40)D. channelThis channel extended at least 25m to right of the GBEP
araneusandD. anarteus(sample 41), whereas C. eodeappears about 150m to the left with maximum width of about 200ie
earlier in NP9a (sample 18) and R. spineus later in NP9b (Fig. 4) asequence boundary (SB) marks erosion and/or condensed
also observed in the southeaantic (Agnini et al., 2007) and Khga sedimentation, which varies in the three outcrops as evident in the
OasisWestern Desert, Egyptéhitawy 2006). Other taxa first appear presence or absence of lithologic units particularly early Eocene Beds-
above the dissolution interval, including poorly preserved 1 and 2The maximum depth of this channel-fill above the SB at the
Pontosphaera planan the upper part of Bed-4 (sample 58) and main GSSP outcrop is about 0.88m (Bed-1 to middle part of Bed-2)

Discoaster mahmoudat the base of Bed-5 (sample 60, Fig. 4). and missing at RSS, as also indicated by the absence of the 0.60m
thick Ca-apatite rich interval of the LSS outcrop. In contrast, the LSS

Discussion and Conclusions outcrop is more complete though condensed compared with the GSSP
(Fig. 2).

The most important criterion for any GSSP is a continuous
sedimentation record. In the primary analysis leading to thelsotope stratigraphy
designation of the Dababiya section as G8®&Fsedimentation record
was considered expanded and complete (Dupuis et al., 2003; Ouda, At Dababiya the carbon isotope records of three closely spaced
2003;Aubry et al., 2007)This conclusion was supported by an sections over a distance of just 75m yield further confirmation of the
expanded and gradually changing carbon isotope curve across theariable erosion pattern at the GS8€ation. Dupuis et ak’(2003)
PETM. Subsequent]ySchulte et al. (2Q) observed that the 613C0rgvalues for the Dabbabiya GS&&h be divided into three main
deposition of the GSSP occurred in a submarine channel, whichparts: (1) a rapid decrease 10 cm below Bed-1 and the SB where the
introduced some doubts as to the viability of Dababiya as a globalP/E boundary is placed followed by gradually decreasing values
representative of the PE boundary event. Our study confirmsthrough Bed-1; (2) minimum values persist through Bed-2 into the
deposition in a submarine channel, but also determined significantower 1/3 of Bed-3; (3) a gradual increase in Bed-3 to the middle of
lateral variations in lithology and mineralogy within 25m and 50m of Bed-5 reaching background values (Fig. 3).
either side of the GSSP suggesting erosion and/or non-deposition. The two sections analyzed to the right and left of the GSSP show
We discuss these observations and their implications for the viabilitysimilarities and diierencesThe most comparable is the LSS outcrop

of Dababiya as GSSP where carbon isotope analysis permits the same subdivisions as the
GSSPbut with important diierences. Most important is the gradual

How complete is the GSSP? decrease i613CCarband613C0rgin the uppermost Palaeocene spanning
about 60cm below the SB (Fig. 3Ais latest Paleocene interval is

Lithostratigraphy not present at the GS®Pthe RSS outcrops where boﬂﬁ(@rg and

d"C..,,,curves shift abruptly at the SBhis suggests that a minimum
The Paleocene-Eocene boundary at the Dababiya GSSP is placegD cm is missing at the top of the Paleocene at the GSSP and probably
at a sequence boundary (SB) that marks a change in lithology fronmore at the RSS outcrop. Isotope stratigraphy also confirms the
hemipelagic marine to sediments enriched in fluvial digghé@chulte absence of the basal Eocene (Bed-1 and half of Bed-2) at the RSS
etal., 201). This lithologic change is characterized by: (1) increased outcrop.This is evident in the*8C__, values of the upper Bed-2 at
detrital components (quartz, phyllosilicates and feldspar) andLSS that mirror similar values in the upper Bed-2 directly overlying
decreased carbonate contéltie latter may be linked to carbonate the SB horizon at the RSS outcrop. In the early Eo&?ﬁgrg curves

Episodes ™. 37, no. 2



84

at LSS and GSS#&re very similar with minor diérences due to the  Wyoming (Bowen et al., 200IJhis suggests that the Dababiya GSSP
lower sediment accumulation rate and higher sample resolution amay indeed be among the more complete and expanded records despite
LSS compared with the GSSP the SB erosion and can serve as reference section for the global record.
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